Herbert Jr. Oertel, M. Böhle, J. Delfs, D. Hafermann, H.'s Aerothermodynamik PDF

By Herbert Jr. Oertel, M. Böhle, J. Delfs, D. Hafermann, H. Holthoff

ISBN-10: 354057008X

ISBN-13: 9783540570080

ISBN-10: 3937300783

ISBN-13: 9783937300788

Dieses Buch wendet sich an Studenten der Ingenieurwissenschaften und Ingenieure der Raumfahrtindustrie und der Energieverfahrenstechnik. Es verkn?pft die klassischen Gebiete der Aerodynamik mit der Nichtgleichgewichts-Thermodynamik hei?er Gase. Am Beispiel des Wiedereintritts einer Raumkapsel in die Erdatmosph?re werden die aerothermodynamischen Grundlagen und numerischen Methoden zur Berechnung des Str?mungsfeldes der Raumkapsel im gaskinetischen und kontinuumsmechanischen Bereich der Wiedereintrittstrajektorie behandelt. Am Beispiel von Raumfahrtprojekten werden die Methoden entwickelt. Die Autoren sind anerkannte Spezialisten f?r dieses Fachgebiet.

Show description

Read or Download Aerothermodynamik PDF

Similar thermodynamics and statistical mechanics books

New PDF release: Basics of Aerothermodynamics

The fundamentals of aerothermodynamics are taken care of during this ebook with precise regard to the truth that outer surfaces of hypersonic automobiles essentially are radiation cooled. the results of this truth are varied for various automobile sessions. as a minimum the houses of either hooked up viscous and separated flows are of significance during this regard.

Additional info for Aerothermodynamik

Sample text

We observe that (d)nL g(N,s)t 1 g(N,n) = Jim 1 -d ,-on. t = x. __ ,-on! dt 1 = -N(N n! + l)(N + 2)···(N + n - 1). (54) Thus for the system of oscillators, (N + 11- 1)! g(N,11)= n! (N - 1)! (55) This result will be needed in solving a problem in the next chapter . •·•. WIH:Ul rlftlll It~ ---f 26 Chapter 1: States of a Model System SUMMARY 1. The multiplicity function for a system of N magnets with spin excess 2s = N 1 - N 1 is N! N! g(N,s) = + s)'. (lN 2 (lN 2 - s)'. In the limit s/N « 1, with N » 1, we have the Gaussian approximation 2.

It is this sharp peak and the continued sharp variation of the multiplicity function far from the peak that will lead to a prediction that the physical properties of systems in thermal equilibrium are well defined. ~l= t. (40) The binomial distribution (15) has the property (17) that (41) and is not normalized to unity. If all states are equally probable, then P(s) = P(s) = I. f) = L f(s) (42) P(N,s). Consider the function /(s) = s2. , and + oo. Then (s2) = f (2/nN) 112 2N ds s 2 exp(-2s 2N 2 /N) • J:dx x e-x' = (2/nN) 112 (N/2) 312 = 2 7 (2/nN)''2 (N/2)3;2 (n/4)112 , whence ((2s) 2 ) = N.

LogN 1 ! - log Ni!. (25) We evaluate the logarithm of N! in (25) by use of the Stirling approximation, according to which N! ~ (2nN) 112 NNexp[ -N + l/(12N) + · · ·] . (26) for N » I. This result is derived in Appendix A. For sufficiently large N, the terms l/(12N) + ···in the argument may be neglected in comparison with N. ;;; + (N + t)logN - N. log21t (27) Similarly (28) log Nd ;;; ! )log Ni - Ni. (29) After rearrangement of (27). logN! ;;; f log(21t/N) where we have used N = N 1 for (25): + (N 1 + t + Ni+ + N 1.

Download PDF sample

Aerothermodynamik by Herbert Jr. Oertel, M. Böhle, J. Delfs, D. Hafermann, H. Holthoff

by Robert

Rated 4.10 of 5 – based on 20 votes